Fuzzy Entropy Based Fuzzy c-Means Clustering with Deterministic and Simulated Annealing Methods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Entropy Based Fuzzy c-Means Clustering with Deterministic and Simulated Annealing Methods

This article explains how to apply the deterministic annealing (DA) and simulated annealing (SA) methods to fuzzy entropy based fuzzy c-means clustering. By regularizing the fuzzy c-means method with fuzzy entropy, a membership function similar to the Fermi-Dirac distribution function, well known in statistical mechanics, is obtained, and, while optimizing its parameters by SA, the minimum of t...

متن کامل

Deterministic and Simulated Annealing Approach to Fuzzy C-means Clustering

This paper explains the approximation of a membership function obtained by entropy regularization of the fuzzy c-means (FCM) method. By regularizing FCM with fuzzy entropy, a membership function similar to the Fermi-Dirac distribution function is obtained. We propose a new clustering method, in which the minimum of the Helmholtz free energy for FCM is searched by deterministic annealing (DA), w...

متن کامل

Fuzzy c-Means Clustering, Entropy Maximization, and Deterministic and Simulated Annealing

Many engineering problems can be formulated as optimization problems, and the deterministic annealing (DA) method [20] is known as an effective optimization method for such problems. DA is a deterministic variant of simulated annealing (SA) [1, 10]. The DA characterizes the minimization problem of cost functions as the minimization of Helmholtz free energywhich depends on a (pseudo) temperature...

متن کامل

Relative entropy fuzzy c-means clustering

Pattern recognition is a collection of computer techniques to classify various observations into different clusters of similar attributes in either supervised or unsupervised manner. Application of fuzzy logic to unsupervised classification or clustering methods has resulted in many wildly used techniques such as fuzzy c-means (FCM) method. However, when the observations are too noisy, the perf...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEICE Transactions on Information and Systems

سال: 2009

ISSN: 0916-8532,1745-1361

DOI: 10.1587/transinf.e92.d.1232